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Abstract

In this paper we give stability analysis and error estimates for the recently introduced

central discontinuous Galerkin method when applied to linear hyperbolic equations. A com-

parison between the central discontinuous Galerkin method and the regular discontinuous

Galerkin method in this context is also made. Numerical experiments are provided to vali-

date the quantitative conclusions from the analysis.
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1 Introduction

In this paper we give stability analysis and provide error estimates for the recently introduced

central discontinuous Galerkin (DG) method [8] for linear hyperbolic equations, and compare

the central DG method with the regular DG method in this context.

The central DG method is designed based on two existing techniques: the central scheme

framework (e.g. [9, 7]) and the DG framework (e.g. [2, 4]). It uses overlapping cells and hence

duplicative information, but avoids numerical fluxes (Riemann solvers) which is a distinct

advantage of central schemes. The central DG scheme also avoids the excessive numerical

dissipation for small time steps, common to some of the earlier central schemes, by a suitable

choice of the numerical dissipation. Being a variant of the DG method, it shares many of

its advantages, such as compact stencil, easy parallel implementation, etc. The central DG

method performs well in numerical simulations of linear and nonlinear scalar and systems of

conservation laws [8].

We now give a description of the regular DG method and the central DG method. For

simplicity, we consider a scalar one dimensional conservation law

ut + f(u)x = 0, (x, t) ∈ [a, b] × [0, T ] (1.1)

with periodic or compactly supported boundary conditions. The DG and central DG meth-

ods can be defined for nonlinear, multi-dimensional and system cases, and with other bound-

ary conditions as well, see [4, 8].

Let {xj} be a partition of [a, b] with hj+ 1
2

= xj+1 − xj and h = maxj hj+ 1
2
. The mesh is

regular, in the sense that maxj hj+ 1
2
/minj hj+ 1

2
is upper-bounded by a fixed constant during

mesh refinements. Denote xj+ 1
2

= 1
2
(xj+1 + xj), Ij = (xj− 1

2
, xj+ 1

2
), and Ij+ 1

2
= (xj, xj+1). Vh

is the set of piecewise polynomials of degree k over the subintervals {Ij} with no continuity

assumed across the subinterval boundaries. Likewise, Wh is the set of piecewise polynomials

of degree k over the subintervals {Ij+ 1
2
} with no continuity assumed across the subinterval

boundaries.
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The regular DG method is defined using the space Vh only. The semi-discrete version is

as follows. Find uh(·, t) ∈ Vh such that for any ϕh ∈ Vh and for all j,

∫

Ij

∂tuh ϕhdx =

∫

Ij

f(uh) ∂xϕhdx− f̂
(

uh(x
−
j+ 1

2

, t), uh(x
+
j+ 1

2

, t)
)

ϕh(x
−
j+ 1

2

)

+f̂
(

uh(x
−
j− 1

2

, t), uh(x
+
j− 1

2

, t)
)

ϕh(x
+
j− 1

2

) (1.2)

where f̂(u−, u+) is a monotone numerical flux, namely it is increasing in the first argument

and decreasing in the second argument, or symbolically f̂(↑, ↓); it is consistent with the

physical flux f̂(u, u) = f(u); and it is at least Lipschitz continuous with both arguments.

For monotone fluxes suitable for the DG method, see, e.g. [2]. For systems the monotone

numerical flux is replaced by a numerical flux obtained through an exact or approximate

Riemann solver, see, e.g. [10].

The central DG method is defined on overlapping cells and uses both spaces Vh and Wh.

We start with the description of the method for the fully discrete version, with forward Euler

time discretization from tn to tn+1 = tn + τ (here the time step τ could change with n, but

for simplicity of notations we will use a constant τ). The scheme is defined by the following

procedure: Find un+1
h ∈ Vh and vn+1

h ∈ Wh, such that for any ϕh ∈ Vh and ψh ∈ Wh,

∫

Ij

un+1
h ϕhdx = θ

∫

Ij

vn
hϕhdx+ (1 − θ)

∫

Ij

un
hϕhdx

+τ

(

∫

Ij

f(vn
h)∂xϕhdx− f

(

vn
h(xj+ 1

2
)
)

ϕh(x
−
j+ 1

2

) + f
(

vn
h(xj− 1

2
)
)

ϕh(x
+
j− 1

2

)

)

(1.3)

∫

I
j+1

2

vn+1
h ψhdx = θ

∫

I
j+1

2

un
hψhdx+ (1 − θ)

∫

I
j+1

2

vn
hψhdx

+τ





∫

I
j+1

2

f(un
h)∂xψhdx− f (un

h(xj+1))ψh(x
−
j+1) + f (un

h(xj))ψh(x
+
j )



 (1.4)

where θ = τ
τmax

and τmax is an upper bound for the time step size due to the CFL restriction,

that is, τmax = c h with a given constant CFL number c dictated by stability. Computa-

tionally, the scheme (1.3)-(1.4) is used with the forward Euler replaced by a Runge-Kutta
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method of suitable temporal accuracy, e.g. the SSP Runge-Kutta methods in [11, 5]. The

time step τ can be chosen arbitrarily subject to the stability restriction τ ≤ τmax, hence

0 ≤ θ ≤ 1. If θ = 1, the scheme is similar in spirit to the original central scheme [9].

We now take the limit τ → 0 to obtain the semi-discrete version of the central DG

scheme: Find uh(·, t) ∈ Vh and vh(·, t) ∈ Wh, such that for any ϕh ∈ Vh and ψh ∈ Wh,
∫

Ij

∂tuh ϕhdx =
1

τmax

∫

Ij

(vh − uh)ϕhdx+

∫

Ij

f(vh)∂xϕhdx

−f
(

vh(xj+ 1
2
, t)
)

ϕh(x
−
j+ 1

2

) + f
(

vh(xj− 1
2
, t)
)

ϕh(x
+
j− 1

2

) (1.5)

∫

I
j+1

2

∂tvh ψhdx =
1

τmax

∫

I
j+1

2

(uh − vh)ψhdx+

∫

I
j+1

2

f(uh)∂xψhdx

−f (uh(xj+1, t))ψh(x
−
j+1) + f (uh(xj, t))ψh(x

+
j ) (1.6)

Notice that, unlike the regular DG scheme (1.2), the central DG scheme (1.5)-(1.6) does not

need a numerical flux to define the interface values of the solution, since the evaluation of the

solution at the interface is in the middle of the staggered mesh, hence in the continuous region

of the solution. The first term on the right side of (1.5) or (1.6) is a numerical dissipation

term. This will become clear when we discuss the stability of the scheme in Section 2.1. In

all the DG schemes (1.2), (1.3)-(1.4) and (1.5)-(1.6), the initial condition is taken as the L2

projection of the PDE initial condition into the relevant finite element space.

The organization of the paper is as follows. In Section 2, we first analyze the L2 stability

and give an a priori error estimate for the semi-discrete central DG scheme (1.5)-(1.6) for

the linear hyperbolic equation, using similar techniques of stability and error analysis for

standard DG methods [6, 3]. We then perform a Fourier analysis for the semi-discrete

central DG scheme (1.5)-(1.6) for the linear hyperbolic equation with uniform meshes for

piecewise constant and linear elements, using the techniques in [13]. This analysis is more

explicit and allows us to compare the errors quantitatively between the central and standard

DG schemes, which is performed in Section 3. In Section 3 we also perform numerical

experiments to verify such quantitative conclusions. We give a few concluding remarks in

Section 4.
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2 Analysis of the central DG scheme

For the purpose of analysis we will consider the linear hyperbolic equation, namely (1.1)

with f(u) = au for a constant a. Our analysis can be easily generalized to multi-dimensional

linear equations and hyperbolic linear systems.

Without loss of generality we consider the following linear hyperbolic equation

ut + ux = 0, (x, t) ∈ [a, b] × [0, T ] (2.1)

We study the L2 stability of the central DG scheme (1.5)-(1.6) for the equation (2.1) in

Section 2.1, and compare the result with that for the regular DG scheme in [6]. In Section

2.2 we provide an L2 a priori error estimate for smooth solutions, and compare the result

with that for the regular DG scheme in [3]. In Section 2.3 we give an quantitative error

estimate for the central DG scheme for polynomial degree up to 1 using Fourier analysis,

similar to the technique used in [12, 13].

2.1 L2 stability

Theorem 2.1. The numerical solution uh and vh of the central DG scheme (1.5)-(1.6) for

the equation (2.1) satisfies the following L2 stability condition

1

2

d

dt

∫ b

a

((uh)
2 + (vh)

2)dx = − 1

τmax

∫ b

a

(uh − vh)
2dx ≤ 0 (2.2)

Proof: Taking the test functions ϕh = uh and ψh = vh in (1.5) and (1.6) respectively,

summing up over j, observing f(u) = u and the periodic (or compactly supported) boundary
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condition, we have

1

2

d

dt

∫ b

a

((uh)
2 + (vh)

2)dx

=
1

τmax

∫ b

a

(

vhuh − (uh)
2 + uhvh − (vh)

2
)

dx+
∑

j

[

∫

Ij

vh ∂xuhdx+

∫

I
j+1

2

uh ∂xvhdx

−vh

(

xj+ 1
2
, t
)

uh

(

x−
j+ 1

2

, t
)

+ vh

(

xj− 1
2
, t
)

uh

(

x+
j− 1

2

, t
)

−uh (xj+1, t) vh

(

x−j+1, t
)

+ uh (xj, t) vh

(

x−j , t
)

]

= − 1

τmax

∫ b

a

(uh − vh)
2dx +

∑

j

[

∫ xj

x
j− 1

2

∂x(uhvh)dx+

∫ x
j+1

2

xj

∂x(uhvh)dx

−vh

(

xj+ 1
2
, t
)

uh

(

x−
j+ 1

2

, t
)

+ vh

(

xj− 1
2
, t
)

uh

(

x+
j− 1

2

, t
)

−uh (xj+1, t) vh

(

x−j+1, t
)

+ uh (xj, t) vh

(

x−j , t
)

]

= − 1

τmax

∫ b

a

(uh − vh)
2dx ≤ 0

Remark 2.1. The proof of Theorem 2.1 is similar to the proof of the cell entropy inequality

for the regular DG method in [6]. However, we cannot prove a similar L2 stability result

for the central DG scheme when applied to the nonlinear scalar conservation law (1.1), even

though the proof of Theorem 2.1 can be easily generalized to multi-dimensional central DG

schemes for linear equations. This is in contrary to the cell entropy inequality for regular

DG schemes, which holds for arbitrary nonlinear scalar conservation laws [6].

Remark 2.2. Theorem 2.1 indicates that the energy dissipation term is 1
τmax

∫ b

a
(uh−vh)

2dx,

that is, it is directly related to the difference of the two duplicative representations uh and

vh of the solution in overlapping cells. In contrast, for the regular DG method, the energy

dissipation term is directly related to the jumps of the numerical solution at cell interfaces.

2.2 L2 a priori error estimate

In this subsection we use the standard DG techniques [3] to obtain an a priori L2 error

estimate for the central DG scheme.
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Theorem 2.2. The numerical solution uh and vh of the central DG scheme (1.5)-(1.6) for

the equation (2.1) with a smooth initial condition u(·, 0) ∈ Hk+1 satisfies the following L2

error estimate

‖u− uh‖2 + ‖u− vh‖2 ≤ Ch2k (2.3)

where u is the exact solution of (2.1), k is the polynomial degree in the finite element spaces

Vh and Wh, and the constant C depends on the (k + 1)-th order Sobolev norm of the initial

condition ||u(·, 0)||Hk+1 as well as on the final time t, but is independent of the mesh size h.

Proof: Let us first introduce the standard notation

Bj(uh, vh;ϕh, ψh) =

∫

Ij

∂tuh ϕhdx−
1

τmax

∫

Ij

(vh − uh)ϕhdx−
∫

Ij

vh∂xϕhdx

+vh(xj+ 1
2
, t)ϕh(x

−
j+ 1

2

) − vh(xj− 1
2
, t)ϕh(x

+
j− 1

2

) (2.4)

+

∫

I
j+1

2

∂tvh ψhdx−
1

τmax

∫

I
j+1

2

(uh − vh)ψhdx−
∫

I
j+1

2

uh∂xψhdx

+uh(xj+1, t)ψh(x
−
j+1) − uh(xj, t)ψh(x

+
j )

Clearly, we have:

Bj(uh, vh;ϕh, ψh) = 0 (2.5)

for all j and all ϕh ∈ Vh and ψh ∈ Wh. It is also clear that the exact solution u of the PDE

(2.1) satisfies

Bj(u, u;ϕh, ψh) = 0 (2.6)

for all j and all ϕh ∈ Vh and ψh ∈ Wh. Subtracting (2.5) from (2.6), we obtain the error

equation

Bj(u− uh, u− vh;ϕh, ψh) = 0 (2.7)

for all j and all ϕh ∈ Vh and ψh ∈ Wh.

We now define P and Q as the standard L2 projection into Vh and Wh respectively. That

is, for each j,
∫

Ij

(Pw(x) − w(x))ϕh(x)dx = 0 ∀ϕh ∈ P
k(Ij) (2.8)
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and
∫

I
j+1

2

(Qw(x) − w(x))ψh(x)dx = 0 ∀ψh ∈ P
k(Ij+ 1

2
) (2.9)

where P
k(Ij) and P

k(Ij+ 1
2
) denote the spaces of polynomials of the degree up to k in the cell

Ij and the cell Ij+ 1
2

respectively. Standard approximation theory [1] implies, for a smooth

function w,

‖(Pw(x) − w(x))‖ + h1/2‖(Pw(x) − w(x))‖Γ
j+1

2

≤ Chk+1 (2.10)

and

‖(Qw(x) − w(x))‖ + h1/2‖(Qw(x) − w(x))‖Γj
≤ Chk+1 (2.11)

where Γj and Γj+ 1
2

denote the set of boundary points of all elements Ij and Ij+1/2 respectively,

and the positive constant C, here and below, solely depending on w(x) and its derivatives,

is independent of h.

We also recall that [1], for any wh ∈ Vh or wh ∈ Wh, there exists a positive constant C

independent of wh and h, such that

‖∂xwh‖ ≤ Ch−1‖wh‖; ‖wh‖Γ ≤ Ch−1/2‖wh‖ (2.12)

where Γ = Γj or Γj+ 1
2
.

We now take:

ϕh = Pu− uh, ψh = Qu− vh (2.13)

in the error equation (2.7), and denote

ϕe = Pu− u, ψe = Qu− u (2.14)

to obtain

Bj(ϕh, ψh;ϕh, ψh) = Bj(ϕ
e, ψe;ϕh, ψh). (2.15)

For the left-hand side of (2.15), we use Theorem 2.1 to conclude

∑

j

Bj(ϕh, ψh;ϕh, ψh) =
1

2

d

dt

∫ b

a

((ϕh)
2 + (ψh)

2)dx +
1

τmax

∫ b

a

(ϕh − ψh)
2dx. (2.16)
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We then write the right-hand side of (2.15) as a sum of three terms

Bj(ϕ
e, ψe;ϕh, ψh) = B1

j +B2
j +B3

j (2.17)

where

B1
j =

1

τmax

∫

Ij

(ϕe − ψe)ϕhdx+
1

τmax

∫

I
j+1

2

(ψe − ϕe)ψhdx +

∫

Ij

∂tϕ
eϕhdx +

∫

I
j+1

2

∂tψ
eψhdx

B2
j = −

∫

Ij

ψe∂xϕhdx−
∫

I
j+1

2

ϕe∂xψhdx

B3
j = ψe(xj+ 1

2
, t)ϕh(x

−
j+ 1

2

, t)−ψe(xj− 1
2
, t)ϕh(x

+
j− 1

2

, t)+ϕe(xj+1, t)ψh(x
−
j+1, t)−ϕe(xj, t)ψh(x

+
j , t)

and we will estimate each term separately.

By using the simple inequality

αβ ≤ 1

2
(α2 + β2), (2.18)

the L2 projection property (2.10) for ϕe, ψe, ∂tϕ
e and ∂tψ

e, and the fact that τmax = O(h),

we have:

B1
j ≤

∫

Ij

(ϕh)
2dx+

∫

I
j+1

2

(ψh)
2dx+ Ch2k+1 (2.19)

Likewise, by using the simple inequality (2.18), the L2 projection property (2.10) for ϕe

and ψe, and the first inequality in (2.12) for ϕh and ψh, we have:

B2
j ≤

∫

Ij

(ϕh)
2dx+

∫

I
j+1

2

(ψh)
2dx+ Ch2k+1 (2.20)

Finally, by using the simple inequality (2.18), the L2 projection property (2.10) for ϕe

and ψe, and the second inequality in (2.12) for ϕh and ψh, we have:

B3
j ≤

∫

Ij

(ϕh)
2dx+

∫

I
j+1

2

(ψh)
2dx+ Ch2k+1 (2.21)

Summing up (2.19), (2.20) and (2.21) over j and combining with (2.16), we obtain from

(2.15)

1

2

d

dt

∫ b

a

((ϕh)
2 + (ψh)

2)dx ≤ C

∫ b

a

((ϕh)
2 + (ψh)

2)dx+ Ch2k

9



This, together with the approximation result (2.10), implies the desired error estimate (2.3).

Remark 2.3. The error estimate of Theorem 2.2 is sub-optimal. Numerically we observe

the optimal (k + 1)-th order accuracy, see [8] and also the numerical results in next section.

In contrast, the error estimate for the regular DG method in such one dimensional and also in

multi-dimensional tensor product cases is optimal [3]. The major technical difficulty leading

to this loss of optimality in the proof is the B2
j term. For the regular DG method this term

is zero for both the regular L2 projection and for a special projection which is orthogonal to

polynomials of one degree lower and can render the boundary terms in B3
j also to vanish.

However, for the central DG method, since it involves ψe and ∂xϕh and they are defined by

polynomials in different cells, it is impossible to make the B2
j term vanish no matter how the

projection is chosen, although a special projection like that used for regular DG methods

can render B3
j to be zero.

Remark 2.4. The error estimate of Theorem 2.2 can be easily generalized to one dimensional

linear hyperbolic systems, multi-dimensional scalar linear hyperbolic equations, and multi-

dimensional symmetric linear systems.

2.3 A quantitative error estimate via Fourier analysis

In this subsection we perform a Fourier analysis for the semi-discrete central DG scheme

(1.5)-(1.6) for the linear hyperbolic equation with uniform meshes for piecewise constant

and linear elements, using the techniques in [13]. This analysis is more explicit and allows

us to compare the errors quantitatively between the central and standard DG schemes.

For this purpose we rewrite the scheme (1.5)-(1.6) for the linear equation (2.1) as a finite

difference scheme on a uniform mesh. Towards this goal we choose the degrees of freedom

for the k-th degree polynomial inside the cell Ij and Ij+ 1
2

respectively as the point values of

the solution, denoted by

uj+ 2i−k
2(k+1)

(t), i = 0, ..., k,

10



and

vj+ 2i+1−k
2(k+1)

(t), i = 0, ..., k,

at the k+1 equally spaced points

(

j +
2i− k

2(k + 1)

)

h, i = 0, ..., k

and
(

j +
2i+ 1 − k

2(k + 1)

)

h, i = 0, ..., k.

The schemes written in terms of these degrees of freedom become finite difference schemes

on a globally uniform mesh (with a mesh size h/(k + 1)), however they are not standard

finite difference schemes because each point in the group of k+1 points belonging to the cell

Ij or Ij+ 1
2

obeys a different form of the finite difference scheme.

To be more specific, we first concentrate on the simplest piecewise constant k = 0 case.

For this case, we choose the degrees of freedom as the point values at the N uniformly spaced

points

uj(t), j = 0, ..., N − 1.

or

vj+ 1
2
(t), j = 0, ..., N − 1.

The solution inside the cell Ij or Ij+ 1
2

is then represented by

uh(x, t) = uj(t)ϕ
0
h(x)

or

vh(x, t) = vj+ 1
2
(t)ψ0

h(x)

where ϕ0
h(x) is the constant function which equals 1 inside Ij, and similarly ψ0

h(x) is the

constant function which equals 1 inside Ij+ 1
2
. With this representation, taking the test

functions ϕh as ϕ0
h, and ψh as ψ0

h, respectively, we obtain easily the finite difference schemes

11



corresponding to the central DG scheme:

u′j = − 1

τmax
uj +

(

1

2τmax
+

1

h

)

vj− 1
2

+

(

1

2τmax
− 1

h

)

vj+ 1
2

v′
j+ 1

2
= − 1

τmax
vj+ 1

2
+

(

1

2τmax
+

1

h

)

uj +

(

1

2τmax
− 1

h

)

uj+1 (2.22)

for j = 0, ..., N − 1. Here u′ and v′ denote the time derivatives of u and v. The scheme can

be rewritten into a more compact form

(

u′j
v′

j+ 1
2

)

= A

(

uj−1

vj− 1
2

)

+B

(

uj

vj+ 1
2

)

+ C

(

uj+1

vj+ 3
2

)

. (2.23)

with

A =

(

0 1
2τmax

+ 1
h

0 0

)

, B =

( − 1
τmax

1
2τmax

− 1
h

1
2τmax

+ 1
h

− 1
τmax

)

, C =

(

0 0
1

2τmax
− 1

h
0

)

.

(2.24)

We now perform the following standard Fourier analysis for the finite difference scheme

(2.23)-(2.24). This analysis depends heavily on the assumption of uniform mesh sizes and

periodic boundary conditions. We make an ansatz of the form

(

uj(t)
vj+ 1

2
(t)

)

=

(

ûm(t)
v̂m(t)

)

eimxj (2.25)

and substitute this into the scheme (2.23)-(2.24) to find the evolution equation for the coef-

ficient vector as
(

û′m(t)
v̂′m(t)

)

= G(m, h)

(

ûm(t)
v̂m(t)

)

(2.26)

where the amplification matrix G(m, h) is given by

G(m, h) = Ae−imh + B + C eimh (2.27)

with the matrices A, B and C defined by (2.24). The two eigenvalues of the amplification

matrix G(m, h) are

λ1 = − 1

τmax
− αei mh

2 , λ2 = − 1

τmax
+ αei mh

2 (2.28)
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where α = ( 1
2τmax

+ 1
h
)e−imh + 1

2τmax
− 1

h
. The general solution of the ODE (2.26) is given by

(

ûm(t)
v̂m(t)

)

= a1 e
λ1t V1 + a2 e

λ2t V2, (2.29)

where the eigenvalues λ1 and λ2 are given by (2.28), and V1 and V2 are the corresponding

eigenvectors given by

V1 =

(

−e−i ξ
2

1

)

, V2 =

(

e−i ξ
2

1

)

, (2.30)

with ξ = mh. For accuracy we look at the low modes, in particular at m = 1. To fit the

given initial condition

uj(0) = eixj , vj+ 1
2
(0) = e

ix
j+1

2 (2.31)

whose imaginary part is the initial condition

uj(0) = sin(xj), vj+ 1
2
(0) = sin(xj+ 1

2
), (2.32)

we require, at t = 0,
(

û1(0)
v̂1(0)

)

=

(

1

ei h
2

)

,

hence we obtain the coefficients a1 and a2 in (2.29) as

a1 = 0, a2 = ei h
2 . (2.33)

We remark that the usual way of taking initial conditions in a finite element method is via

an L2 projection, not by a point value collocation (2.32), however we have verified that this

does not affect the final results in the analysis in this paper. We thus have the explicit

solutions of the scheme (2.23)-(2.24) with the initial condition (2.31), for example

uj(t) = a2e
ixj+λ2t−i h

2 (2.34)

with the eigenvalue λ2 given by (2.28) with m = 1 and the coefficient a2 given by (2.33). By

a simple Taylor expansion, we obtain the imaginary part of uj(t) to be

Im{uj(t)} = sin(xj − t) −
(

t

8c
sin(xj − t)

)

h +O(h2) (2.35)

13



where c = τmax

h
= O(1) is the maximum CFL number. This is clearly consistent with the

exact solution to first order accuracy. We can similarly check the first order accuracy of

Im{vj+ 1
2
(t)}.

We now repeat this analysis for the piecewise linear k = 1 case. The solution inside the

cell Ij or Ij+ 1
2

is then represented by

uh(x, t) = uj− 1
4
(t)ϕ1

h(ξ) + uj+ 1
4
(t)ϕ2

h(ξ)

or

vh(x, t) = vj+ 1
4
(t)ψ1

h(ξ) + vj+ 3
4
ψ2

h(ξ)

where ϕ1
h(ξ) = −ξ + 1

2
, ϕ2

h(ξ) = ξ + 1
2
, ψ1

h(ξ) = −ξ + 3
2

and ψ2
h(ξ) = ξ − 1

2
, with ξ =

2(x−xj)

h
. With this representation, taking the test functions ϕh and ψh as ϕ1

h, ϕ
2
h and ψ1

h, ψ
2
h

respectively, and inverting the small 4 × 4 mass matrix by hand, we obtain easily the finite

difference scheme corresponding to the central DG scheme as













u′
j− 1

4

u′
j+ 1

4

v′
j+ 1

4

v′
j+ 3

4













= A











uj− 5
4

uj− 3
4

vj− 3
4

vj− 1
4











+B











uj− 1
4

uj+ 1
4

vj+ 1
4

vj+ 3
4











+ C











uj+ 3
4

uj+ 5
4

vj+ 5
4

vj+ 7
4











. (2.36)

with

A =









0 0 1
16τmax

+ 5
4h

13
16τmax

− 1
4h

0 0 −1
16τmax

− 1
4h

3
16τmax

+ 5
4h

0 0 0 0
0 0 0 0









,

B =









−1
τmax

0 3
16τmax

− 5
4h

−1
16τmax

+ 1
4h

0 −1
τmax

13
16τmax

+ 1
4h

1
16τmax

− 5
4h

1
16τmax

+ 5
4h

13
16τmax

− 1
4h

−1
τmax

0
−1

16τmax
− 1

4h
3

16τmax
+ 5

4h
0 −1

τmax









(2.37)

C =









0 0 0 0
0 0 0 0

3
16τmax

− 5
4h

−1
16τmax

+ 1
4h

0 0
13

16τmax
+ 1

4h
1

16τmax
− 5

4h
0 0








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We make an ansatz of the form










uj− 1
4
(t)

uj+ 1
4
(t)

vj+ 1
4
(t)

vj+ 3
4
(t)











=











ûm,− 1
4
(t)

ûm, 1
4
(t)

v̂m, 1
4
(t)

v̂m, 3
4
(t)











eimxj (2.38)

and substitute this into the scheme (2.36)-(2.37) to find the evolution equation for the coef-

ficient vector as












û′
m,− 1

4

(t)

û′
m,+ 1

4

(t)

v̂′
m, 1

4

(t)

v̂′
m, 3

4

(t)













= G(k, h)











ûm,− 1
4
(t)

ûm,+ 1
4
(t)

v̂m, 1
4
(t)

v̂m, 3
4
(t)











(2.39)

where the amplification matrix G(m, h) is given by

G(m, h) = Ae−imh + B + C eimh. (2.40)

with the matrices A, B and C defined by (2.37). The eigenvalues of the amplification matrix

G(m, h) are

λ1 =
1

τmax
(−1 +

√
2

8
e−imh

√
−α1 − α2)

λ2 =
1

τmax
(−1 −

√
2

8
e−imh

√
−α1 − α2)

λ3 =
1

τmax
(−1 +

√
2

8
e−imh

√
−α1 + α2)

λ4 =
1

τmax

(−1 −
√

2

8
e−imh

√
−α1 + α2)

where

α1 = (1 − 4c− 52c2)eimh − 2(11 − 52c2)e2imh + (1 + 4c− 52c2)e3imh,

α2 = eimh(1 + eimh + 10c(1 − eimh))
[

−3 − 12c+ 4c2 (2.41)

+2(21 − 4c2)eimh + 4(−3 + 12c+ 4c2)e2imh]1/2

with c = τmax

h
being the maximum CFL number.
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The general solution of the ODE (2.39) is given by










ûm,− 1
4
(t)

ûm,+ 1
4
(t)

v̂m, 1
4
(t)

v̂m, 3
4
(t)











= a1 e
λ1t V1 + a2 e

λ2t V2 + a3 e
λ3t V3 + a4 e

λ4t V4, (2.42)

where the eigenvalues λ1 , λ2, λ3 and λ4 are given by (2.41), and V1 , V2, V3 and V4 are the

corresponding eigenvectors given by

V1 =













√
2e−imh

√
−α1−α2(α7+2α2)

α5(α6−α2)√
−2(α1+α2)(1+eimh−10c(−1+eimh))

α6−α2
α4α2+α3

α5(α6−α2)

1













,

V2 =













−
√

2e−imh
√
−α1−α2(α7+2α2)

α5(α6−α2)

−
√

−2(α1+α2)(1+eimh−10c(−1+eimh))

α6−α2
α4α2+α3

α5(α6−α2)

1













,

V3 =













√
2e−imh

√
−α1+α2(−α7+2α2)

α5(α6+α2)√
2(−α1+α2)(1+eimh−10c(−1+eimh))

α6+α2
−α4α2+α3

α5(α6+α2)

1













,

V4 =













−
√

2e−imh
√
−α1+α2(−α7+2α2)

α5(α6+α2)

−
√

2(−α1+α2)(1+eimh−10c(−1+eimh))

α6+α2
−α4α2+α3

α5(α6+α2)

1













, (2.43)

where c = τmax

h
is still the maximum CFL number, α1 and α2 are given by (2.41), and the

remaining α′s are given by

α3 = −(7 + 104c+ 332c2 − 80c3)eimh + (77 + 896c+ 532c2 − 240c3)e2imh

+(79 − 856c− 68c2 + 240c3)e3imh − (5 − 64c+ 132c2 + 80c3)e4imh,

α4 = −1 − 20c+ (−3 + 20c)eimh, (2.44)

α5 = −1 − 4c+ (13 + 4c)eimh,

α6 = (1 + 10c)2eimh + (2 − 200c2)e2imh + (1 − 10c)2e3imh,

α7 = (1 + 10c)eimh − 20c2e2imh − (1 − 10c)2e3imh.
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We again look at the low modes to determine accuracy. In particular we look at m = 1.

To fit the given initial condition

uj− 1
4
(0) = e

ix
j− 1

4 , uj+ 1
4
(0) = e

ix
j+1

4 , vj+ 1
4
(0) = e

ix
j+1

4 , vj+ 3
4
(0) = e

ix
j+3

4 (2.45)

whose imaginary part is our initial condition for (2.1), we require, at t = 0,











ûm,− 1
4
(0)

ûm,+ 1
4
(0)

v̂m, 1
4
(0)

v̂m, 3
4
(0)











=











ei −h
4

ei h
4

ei h
4

ei 3h
4











.

This gives us the coefficients a1, a2, a3 and a4 in the solution (2.42). We thus have the

explicit solution of the scheme (2.36)-(2.37) with the initial condition (2.45), for example

uj− 1
4

= a1e
ixj+λ1t−i h

4V1 + a2e
ixj+λ2t−i h

4V2 + a3e
ixj+λ3t−i h

4V3 + a4e
ixj+λ4t−i h

4V4 (2.46)

with the eigenvalues λ1, λ2, λ3, λ4 given by (2.41) and the eigenvectors V1, V2, V3, V4 given by

(2.43) with m = 1, and the coefficients a1, a2, a3 and a4 obtained above by fitting the initial

condition. Through a simple Taylor expansion, we obtain the imaginary part of uj− 1
4
(t) to

be

Im{uj− 1
4
(t)} = sin(xj− 1

4
− t) −

sin(xj− 1
4
− t)

30
h2 +O(h3) (2.47)

for a fixed choice of τmax = 0.4h. Results for other choices of τmax also indicate the same

second order accuracy. The results for Im{uj+ 1
4
(t)}, Im{vj+ 1

4
(t)} and Im{vj+ 3

4
(t)} are

similar.

In principle this analysis can be performed for higher order polynomials in the central

DG scheme, however the algebra becomes prohibitively complicated.

3 A comparison between the central DG and standard

DG methods

In [13], results to similar to those in (2.35) and (2.47) were obtained for the regular DG

scheme (1.2) applied to the linear equation (2.1) with an upwind numerical flux. For the

17



piecewise constant k = 0 case, the result for the regular DG scheme is

Im{uj(t)} = sin(xj − t) −
(

t

2
sin(xj − t)

)

h+O(h2), (3.1)

and for the piecewise linear k = 1 case, it is

Im{uj− 1
4
(t)} = sin(xj− 1

4
− t) −

sin(xj− 1
4
− t)

24
h2 +O(h3) (3.2)

We are now in a position to make a quantitative comparison between the regular and

central DG schemes. For the piecewise constant k = 0 case we have the following conclusions:

1. The semi-discrete versions of the regular and central DG schemes are both stable.

When discretized with the first order forward Euler method, the CFL numbers for the

DG method and for the central DG method are 1.0 and 0.5, respectively (this can be

verified by an easy von Neumann analysis). When discretized with the second order

nonlinearly stable Runge-Kutta method [11], the CFL numbers for the DG method

and for the central DG method are 1.0 and 0.87, respectively. Thus the central DG

method has a smaller CFL number.

2. They are both first order accurate. By a comparison of (2.35) and (3.1), the leading

errors for the central and regular DG methods for the first mode (i.e. for the sin(x)

initial condition) have a ratio 1/(4c). That is, the central DG method has a smaller

error than the standard DG method on the same mesh when c = τmax

h
> 1

4
.

We now compute the DG and central DG solutions to (2.1) with u(x, 0) = sin(x) as the

initial condition and with periodic boundary conditions, up to t = 25 (about four periods

later in time), to verify the quantitative comparison above. In our computation we take

τmax = 0.8h, namely c = 0.8. We take a small time step τ = 0.01h to reduce the effect from

the time discretization. In order to be consistent with the error analysis above, the errors

are computed for uh at the points xj. The L2 and L∞ errors and order of accuracy of the

central DG and regular DG methods are listed in Tables 3.1 and 3.2 respectively. We also
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Table 3.1: L2 and L∞ errors and orders of accuracy of the first order central DG method.

numerical solutions predicted by analysis
h L2 error order L∞ error order L2 error order L∞ error order

2π/80 1.88E-01 — 2.65E-01 — 2.17E-01 — 3.07E-01 —
2π/160 1.01E-01 0.90 1.43E-01 0.90 1.09E-01 1.00 1.53E-01 1.00
2π/320 5.23E-02 0.95 7.40E-02 0.95 5.42E-02 1.00 7.67E-02 1.00
2π/640 2.67E-02 0.97 3.77E-02 0.97 2.71E-02 1.00 3.84E-02 1.00

2π/1280 1.35E-02 0.99 1.90E-02 0.99 1.36E-02 1.00 1.92E-02 1.00

Table 3.2: L2 and L∞ errors and orders of accuracy of the first order regular DG method.

numerical solution predicted by analysis
h L2 error order L∞ error order L2 error order L∞ error order

2π/80 4.42E-01 — 6.25E-01 — 6.94E-01 — 9.81E-01 —
2π/160 2.74E-01 0.69 3.88E-01 0.69 3.47E-01 1.00 4.91E-01 1.00
2π/320 1.54E-01 0.83 2.18E-01 0.83 1.73E-01 1.00 2.45E-01 1.00
2π/640 8.17E-02 0.91 1.16E-01 0.91 8.68E-02 1.00 1.23E-01 1.00

2π/1280 4.21E-02 0.96 5.95E-02 0.96 4.34E-02 1.00 6.14E-02 1.00

list the predicted errors by the analysis, namely the leading terms in the Taylor expansions

in (2.35) and (3.1) in these tables. We can see that the predicted errors and the actual errors

are very close, validating our quantitative analysis in Section 2.3.

Likewise, for the piecewise linear case k = 1, we have the following conclusions:

1. The semi-discrete versions of the regular and central DG schemes are both stable.

When discretized with the second order nonlinearly stable Runge-Kutta method [11],

the CFL numbers for the DG method and for the central DG method are 0.33 and

0.45, respectively (this can be verified by an easy von Neumann analysis). Thus the

central DG method has a larger CFL number.

2. They are both second order accurate. The central DG method has different leading

errors bh2 sin(xj− 1
4
− t) for different c = τmax

h
, with the sin(x) initial condition. We list

the corresponding b with different values of c in Table 3.3.

19



Table 3.3: The leading error term bh2 sin(xj− 1
4
− t) for the central DG method for different

c = τmax

h
.

c 0.2 0.3 0.4 0.5 0.6 0.8
b 1

60
1
40

1
30

1
24

1
20

2
30

Table 3.4: L2 and L∞ errors and orders of accuracy of the second order central DG method.

numerical solution predicted by analysis
h L2 error order L∞ error order L2 error order L∞ error order

2π/20 1.20E-02 — 1.37E-02 — 4.10E-03 — 4.11E-03 —
2π/40 1.53E-03 2.98 1.93E-03 2.82 4.11E-04 2.00 4.11E-04 2.00
2π/80 1.91E-04 3.00 2.94E-04 2.72 1.03E-04 2.00 1.03E-04 2.00

2π/160 2.57E-05 2.89 4.96E-05 2.57 2.57E-05 2.00 2.57E-05 2.00
2π/320 6.43E-06 2.00 9.42E-06 2.40 6.43E-06 2.00 6.43E-05 2.00

By a comparison of Table 3.3 and (3.2), the leading errors for the central and regular

DG methods for the first mode (i.e. for the sin(x) initial condition) are equal when

c = τmax

h
= 0.5. The central DG method has a smaller error than the standard DG

method on the same mesh when c < 0.5.

We now compute the DG and central DG solutions to (2.1) with a u(x, 0) = sin(x) initial

condition and periodic boundary conditions, up to t = 25 (about four periods later in time),

to verify the quantitative comparison above. In our computation we take τmax = 0.2h, namely

c = 0.2. We take a small time step τ = 0.01h to reduce the effect from the time discretization.

In order to be consistent with the error analysis above, the errors are computed for uh at the

points xj− 1
4

and xj+ 1
4
. The L2 and L∞ errors and order of accuracy of the central DG and

regular DG methods are listed in Tables 3.4 and 3.5 respectively. We also list the predicted

errors by the analysis, namely the leading terms in the Taylor expansions in Table 3.3 and

(3.2) in these tables. We can see again that the predicted errors and the actual errors are

very close, validating our quantitative analysis in Section 2.3.
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Table 3.5: L2 and L∞ errors and orders of accuracy of the second order regular DG method.

numerical solution predicted by analysis
h L2 error order L∞ error order L2 error order L∞ error order

2π/20 1.06E-02 — 1.46E-02 — 4.10E-03 — 4.11E-03 —
2π/40 1.34E-03 2.98 2.36E-03 2.63 1.03E-03 2.00 1.03E-03 2.00
2π/80 2.57E-04 2.39 4.24E-04 2.47 2.57E-04 2.00 2.57E-04 2.00

2π/160 6.42E-05 2.00 8.53E-05 2.32 6.43E-05 2.00 6.43E-05 2.00
2π/320 1.61E-05 2.00 1.82E-05 2.19 1.61E-05 2.00 1.61E-05 2.00

4 Concluding remarks

We have performed an L2 stability analysis and an a priori error estimate for the recently

introduced central discontinuous Galerkin method when applied to linear hyperbolic equa-

tions. We have also performed a Fourier type error analysis which is more quantitative and

allows us to make a comparison with the regular discontinuous Galerkin method. It is verified

that, even though the central discontinuous Galerkin method uses duplicative representa-

tion of the solution, hence involves twice the computational cost and storage requirement

than the regular discontinuous Galerkin method, it is more accurate for certain choices of a

dissipation parameter for the same mesh. The stability analysis and error estimates do not

seem to be easily generalizable to nonlinear hyperbolic equations. Further analysis in this

direction is needed. A comprehensive comparison of the numerical performance of the central

discontinuous Galerkin method and the regular discontinuous Galerkin method for nonlinear

multi-dimensional systems of hyperbolic conservation laws would also be very useful.
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